If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2=1x
We move all terms to the left:
9x^2-(1x)=0
a = 9; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·9·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*9}=\frac{0}{18} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*9}=\frac{2}{18} =1/9 $
| 6^2x+6^(x+1)-91=0 | | -2=4x-1=4+x-1 | | 3x+7x=48 | | 11x-21=17-8 | | 6a-13=3a+2 | | +7-5w=3 | | 1/2f+4=5/2f-8 | | x/4+2/5=x/2=-1 | | -1/2(d+4)=-2 | | x-7/4-2=x-1/3 | | 5/7m=4 | | W=-12m+197 | | 5x+(2x+24)=180 | | 4p+8=7 | | 2X^3+x^2+9x+4=0 | | p4+8=7 | | 2X^31x^2+9x+4=0 | | 4x-2+4x-2=90 | | 10x+9-11-x=-4x+-8-6x-6 | | 4.5x-2=25 | | 16-x/7=31 | | x(3x+5)=-2 | | V=6(18-9)+(2+v) | | 16.95m=22.95m | | x16-9=-8 | | 35-x/5=x2 | | 7–2t=3 | | 5(2x+1=10x | | 3(v+4)^2=125 | | (3x-2)/8+(2-x)/4=1/2 | | (s^2-1)(s+2)=0 | | 2(1/9+1)=-3(2q-1)+4(2q+1) |